
Forschungsförderungsfonds

Decision Methods and Tools in the Context of
Pension Finance

Dr. Sebastian Stöckl

FFF Project No: FIN_19_2

t=0: Current Age  t=T: Retirement Age 

: Input Variable
: Decision Variable

• Gender 
• Earnings li 
• Growth Rate

of Earnings lg 

$

1st pillar

2nd pillar

3rd pillar

Saving Phase Retirement Phase

Savings

• Past contributions s1 
• Contribution rate c1 
• Asset Allocation w1 

• Past contributions s2 
• Contribution rate c2 
• Asset Allocation w2 

• Liquid Wealth s3 
• Illiquid Wealth w0 
• Contribution rate 1-c 
• Asset Allocation w3 

• Consumption c 
• Tax Payments 

• Pension 

• Pension Conv. Factor
rho2 

• Lumpsum 

• Consumption = Pensions +
Self-managed Pension  

• Tax Payments 

• Pension Conv. Factor
rho3 

• Lumpsum 

Optimal Life-time Expected Utility
• Risk Aversion ra 
• Time preference  
• Gender/Cohort Mortality 

Initial Situation:
• fin_15_2 prepared code to optimize pension decision in the

Liechtenstein pension system
• Problem:

• Computationally quite demanding
• Not easily accessible for everyone

Overall Project Goals:
1. Make model available to everyone
2. Better understanding of model and implications

Step 1:
1. Improve Code

a. Avoid infeasible in- & outputs* 

b. Speed up optimization 

c. Make code publicly available 

d. Document code/law/tax scheme 

R-package on github: install_github(“sstoeckl/pensionfinanceLi”)
Detailed documentation: vignette(“model”)
*Moral Hazard: Borrow pension from the bank without intention of
payback

Step 2:
2. Determine grid of feasible input parameters (3’110’400) 

3. Run optimization for every parameter combination
a. Massive parallelization necessary 

b. To avoid data loss in case of crash & provide
easy access data save to high-performance
database (Amazon RDS) 

c. Rent clusters & run code (Amazon AWS) 

To better understand the model and its drivers | Computationally
demanding (approx. 10 minutes per optimization) | Currently at 800’000 |
Expected to finish in Dec 2021 (necessary cost reduction)

Step 4:
6. Make results available to the public through online app

a. Use plumber/swagger to create api that weekly
updates Machine Learning models 

b. Create Shiny App that connects to api and
allows for real-time near-optimal
pension decisions https://apps.resqfin.com/pfli 

Step 3:
4. Develop heuristic model to predict (near-optimal) pension decisions

in real-time through Machine Learning
a. Linear & nonlinear models (k-nearest

neighbor, random forest) using scikit-learn 

b. Random Forest shows considerable
forecasting power 

5. Use models to gain better understanding of relation
between in- and output variables (preliminary) 

Strong non-linearities driving results (c, , w3 ~ ra + c_age)

https://github.com/sstoeckl/pensionfinanceLi
https://apps.resqfin.com/pfli

