Scalable Density-Based Clustering with Quality Guarantees using Random Projections

zurück zur Übersicht

Referenz

Schneider, J., & Vlachos, M. (2017). Scalable Density-Based Clustering with Quality Guarantees using Random Projections. Data Mining and Knowledge Discovery (DMKD), 14(1), 85-96. (ISI_2016: 3.16; ISI_2016_5year: 3.477; ISI_2018: 2.879)

Publikationsart

Beitrag in wissenschaftlicher Fachzeitschrift

Abstract

Clustering offers signi?cant insights in data analysis. Density-based algorithms have emerged as flexible and efficient techniques, able to discover high-quality and potentially irregularly shaped clusters. Here, we present scal- able density-based clustering algorithms using random projections. Our clus- tering methodology achieves a speedup of two orders of magnitude compared with equivalent state-of-art density-based techniques, while o?ering analytical guarantees on the clustering quality in Euclidean space. Moreover, it does not introduce difficult to set parameters. We provide a comprehensive analysis of our algorithms and comparison with existing density-based algorithms.

Mitarbeiter

Einrichtungen

  • Institut für Wirtschaftsinformatik
  • Hilti Lehrstuhl für Business Process Management

Original Source URL

Link

DOI

http://dx.doi.org/10.1007/s10618-017-0498-x