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Optimal Portfolios and Where to Find Them

Hint: Somewhere inside a High-Dimensional Convex Polytope



Agenda

1. Introduction
2. Dear Investor, What’s Your Objective?
3. Dear Audience, Remember Geometry?
4. Dear Manager, Are You Reliable Enough?
5. Dear Solver, Can You Find It?



1. About me

MSc in Economics University of Bern

Research and Product Development (2011-now)
OLZ AG

3



1. About OLZ AG

OLZ AG was founded in 2001 by
C. Orlacchio
Prof. C. Loderer (University of Bern)
P. Zgraggen

Headquartered in Bern with offices and subsidiaries in
Zurich
Liechtenstein
Singapore

The investment philosophy is

Efficient Investing
asset management without conflicts of interest
scientifically sound investment concept

The main focus is on

Risk Based Strategies
OLZ AG provides investment solutions for

Institutional Investors
Private Clients
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2. Dear Investor, What’s Your Objective?

In Portfolio Optimization we search for the weights ŵ such that:

ŵ = argmax
w∈C

f (w)

The objective function f can be

Linear and Quadratic
Ex.: Mean-Variance (Markowitz)

f (w) = µT w −
λ

2
wT Σw

where

µ = E [X]

Σ = E
[
(X − µ) (X − µ)T

]

Non-linear
Ex.: Prospect Theory
(Kahneman-Tversky)

f (w) = E
[
g

(
wT X

)]
where

g(x) =
{

(x − θ)a x ≥ θ
−b(−(x − θ))a x < θ

a ∈ [0, 1] , b > 1.
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2. Dear Investor, What’s Your Objective?

The constraints C can be

Budget 1T w = 1

No Short-Selling (Lower Bounds)
Liquidity (Upper Bounds)

bl ≤ w ≤ bu

Country
Sector
Asset Classes

Aw ≤ b, with A binary

Tracking Error
Variance

(w − w̄)T Σ (w − w̄) ≤ c̄

Turnover ‖w − w̄‖1 ≤ c̄

Tail Risk g (w) ≤ 0
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Mixed Integer: w ∈ Zn
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3. Dear Audience, Remember Geometry?

Definition (Convex Set)
A set C ⊆ Rn is convex if for all x, y ∈ C and
for all α ∈ [0, 1], αx + (1 − α) y ∈ C.

Definition (Convex Function)
A function f : Rn → R is convex if for all
x, y ∈ C and for all α ∈ [0, 1],

f (αx + (1 − α) y) ≤ αf (x) + (1 − α) f (y) .
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3. Dear Audience, Remember Geometry?

Definition (Lp-norm)
For p ∈ R, p ≥ 1, the Lp-norm of w ∈ Rn is ‖x‖p =

(∑n

k=1 |xk|p
) 1

p .

Definition (Polyhedron)
An n-dimensional (convex) polyhedron is the
intersection of I n-dimensional half-spaces
Si =

{
w ∈ Rn

∣∣aT
i w ≤ bi

}
for i = 1, . . . , I

P =
I⋂

i=1

Si = {w ∈ Rn |Aw ≤ b }

where the i-th row of A is ai for i = 1, . . . , I.
This is the H-representation of a polyhedron.

Definition (Polytope)
A (convex) polytope P is a bounded (convex) polyhedron.
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3. Dear Audience, Remember Geometry?

Definition (Standard Simplex)
A standard n-simplex is

S =
{

w ∈ Rn+1
∣∣1T w = 1, w ≥ 0

}

Definition (Ellopsoid)
An ellipsoid centred in c with shape matrix
Σ � 0 is

EΣ,c =
{

w ∈ Rn
∣∣(w − c)T Σ (w − c) ≤ 1

}
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4. Dear Manager, Are You Reliable Enough?

”THE PROCESS OF SELECTING a portfolio may be divided into two stages.
The first stage starts with observation and experience and ends with beliefs about the
future performances of available securities. The second stage starts with the relevant

beliefs about future performances and ends with the choice of portfolio.
This paper is concerned with the second stage.”

H. Markowitz (1952). Portfolio Selection. Journal of Finance Vol.7, No.1., pp.77-91.
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4. Dear Manager, Are You Reliable Enough?
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4. Dear Manager, Are You Reliable Enough?

Bias-Variance Tradeoff
The total squared error of an estimator can be decomposed as

E
[(

Σ̂ − Σ
)2

]
= Var

[
Σ̂

]
+ Bias

[
Σ̂, Σ

]2

Variance
An estimator Σ̂ computed on real data
of the quantity Σ is affected by noise.

Var
[
Σ̂

]
= E

[
Σ̂2

]
− E

[
Σ̂

]2 is high.

Bias
A matrix Σ̄ chosen for it’s structure has
a bias w.r.t. Σ.

Bias
[
Σ̄, Σ

]
= E

[
Σ̄ − Σ

]
is high.

Σ̂ Σ̄

Σ

(1 − α)Σ̂ + αΣ̄

Shrinkage

Σ Real Covariance Matrix

Σ̂ Estimated Covariance Matrix
Σ̄ Shrinkage Target
α Shrinkage Intensity
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4. Dear Manager, Are You Reliable Enough?

[
1.08 −0.2 0.8
−0.2 0.92 −0.3
0.8 −0.3 1.12

]
= Σ̂ Σ̄ =

[
1 0 0
0 1 0
0 0 1

]

Σ =

[
1.06 −0.21 0.78

−0.21 0.95 −0.28
0.78 −0.28 1.1

]

Σα

Σα = (1 − α)Σ̂ + αΣ̄ =

[
1.06 −0.2 0.8
−0.2 0.94 −0.3
0.8 −0.3 1.09

]
with α = 0.25
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4. Dear Manager, Are You Reliable Enough?

Theorem (Shrinkage Interpretation of Constraints)
Given a covariance matrix Σ̂ and a set of constraints C there exist ΣC such that

argmin
w∈C

wT Σ̂w = ŵ = argmin
w∈Rn

wT ΣCw

In addition
ΣC = Σ̂ + α∆ = (1 − α) Σ̂ + α

(
Σ̂ + ∆

)
so ΣC is a shrinked version of Σ̂.

Σ̂ Σ̄ = Σ̂ + ∆

Σ

Σα = ΣC

18



4. Dear Manager, Are You Reliable Enough?

Variance-Turnover Tradeoff
When reallocating a portfolio, it can be interesting to have a turnover constraint in order
to limit the impact of transaction costs

‖w − w̄‖1 ≤ c̄.

The marginal benefit (risk reduction) decreases substantially when turnover increases.
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5. Dear Solver, Can You Find It?

Objective Function

Linear Quadratic Non-Linear

C
on

st
ra

in
ts

Linear LP QP NLP

Quadratic QCLP QCQP NLP

Mixed-Integers MILP MIQP MINLP

Non-Linear NLP NLP GNLP
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6. Appendix
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